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track 2. | -
symptom severity classification

- RDoC: framework for studying mental disorders

- INntegrates many levels of information (from genomics to
self-report) to understand the basic dimensions of human

behavior (from normal to abnormal)

. 5 domains: POSITIVE VALENCE*, NEGATIVE VALENCE, COGNITIVE:
SOCIAL PROCESSES, AROUSAL AND REGULATORY SYSTEMS

* how good systems are at predicting patients’ symptom
severity, based on initial psychiatric evaluation records?

- * Responses to positive motivational situations or contexts, such as reward seeking, consummatory behavior, and reward/habit learning (alcohol, drink, abuse,
III | Michele Filannino repetitive, stereotypy, drug, gamble, count, craving, compulsive) et G Rl D



research domain criteria
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annotation process

- 3 expert psychiatrists with

several years of experience
- MGH and Harvard Med. Sc.
- 2 annotation:

- tie-broken by the 3rd

- adjudicated by the most
experienced

- T annotation:

- the most experienced
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distribution of classes
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04 39.81%

B Training
B Test

24.54%
22.17%

14.35%

14.08%

Absent Mild Moderate Severe
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track 2: performance measures

Michele Filannino

« Nominal Classification measures:

« Precision, Recall,

- Median Absolute

—-1-measure, Accuracy, Cohen's Kappa
coefficient, Scott’'s Pi coefficient

- Ordinal/Interval Classification measures:

-rror, Mean Absolute

—rror, Mean Squared

- Continuous Regression measures:

- ranking

- Macro-averaged Mean Absolute Error

- R?2 coefficient, Pearson’s correlation coefficient

=rror
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MAEH
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gold
predictions can be

adjusted by guessing the
central tendency!
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MAEM
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MAEM(h,Te) = 1 >

Absent Mild Moderate Severe

- copes with imbalanced data

- the under-represented classes counts as any other
class, rather than proportionally to their frequencies

- normalized by maximum error
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participation Rdg:le @

,\."]5 countries - 11 countries
. 5* » 24 teams

- 65 Institutions - 42 Institutions
. 154 researchers .- 110 researchers

- 65 submitted runs




general results (all runs)
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count

0.5 052054 0.560.58 0.6 0.620.640.660.68 0.7 0.720.74 0.76 0.78 0.8 0.820.840.860.88

macro-averaged Mean Absolute Error

Min:
0.524597

Max:
0.863019

Average:
0.771492

Median:
0.775882

Standard Deviation:
0.056080
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TOP 10 (best runs only)

T SentiMetrix Inc.

2 The University of Texas at Dallas
3 University of Kentucky
University of Pittsburgh

Med Data Quest Inc.

Harbin Institute of Technology Shenzhen Graduate

N O o A

University of Minnesota
8 Antwerp University Hospital

9 LIMSI-CNRS
10 The University of Manchester

@ Illil- Michele Filannino 24 teams -> 24 best runs

0.863019
0.840963
0.838615
0.825594
0.81/474
0.816844
0.81497/1
0.806356
0.801/38
0.8071143
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TOP 10 (all runs)

Institutions (# run)

T SentiMetrix Inc. (#3)

2 The University of Texas at Dallas (#3)

3 University of Kentucky (#3)

4 University of Kentucky (#1)

S5 SentiMetrix Inc. (#1)

© University of Kentucky (#2)

/  SentiMetrix Inc. (#2)

8 University of Pittsburgh (#3)

O The University of Texas at Dallas (#2)
10 University of Pittsburgh (#2)

@ Illil- Michele Filannino 65 submitted runs

0.863019
0.840963
0.838615
0.837284
0.836503
0.835138
0.833281
0.825594
0.824262
0.821807/
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methods

-~ [ Supervised B Semi-supervised [ Rule-based M Hybrid
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learning technigues

@ IIII I- Michele Filannino

e Supervised:

« SVM, neural networks, conv. NN, Random

Regression, SVR, Nalve

Boosting, Log. Ordinal
e Semi-supervised:

. self-training
« Unsupervised:

- embeddings, brown clustering, skip-grams

e Rule-based:

Regress

on

- hand-crafted rules, association rules

« Hybrid:

- hand-crafted rules + neural network

—orest, Logistic

Bayes, Bayesian nets, Gradient Tree
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[€SOUrces

- M Proprietary

B Both
B None
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[eSOources

* Pre-processing & Feature extraction:

- OpenNLP, MetaMap, NLTK, cTAKES, MedLEE, LingScope,
GENIA, DSM Ontology, SentEmotion
« Corpora:

- Gigaword, PubMed Central
e Machine learning:

- scikit-learn, scipy, Weka, XGBoost, Mandolin, liblinear,
word2vec, lIbSVM
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medical experts involvement
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annotators vs gola

Annotator 1 14%
Annotator 2 =R

Annotator 3 k4 21%

Gold standard 14% 24%

B Absent B Mild " Moderate

@ Illil- Michele Filannino

B Severe
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1T annotator

used data
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errors (TOP 5 best runs)

gold
labels

1st best run 2nd best run

: 2 abs mild mod sevr abs mild mod sevr

Absent 21 10 O O 7 10 4 O

Mild 7 13 2 3 20 3

Moderate 2 12 3 L 9 9
Severe O 3 9 O 1 7

Michele Filannino

3rd best run

abs mild mod sevr

23 8 O O

8 6 O
4 12 2
O 7 24

abs mild mod sevr

4th best run

23 6 L
9 23
2 12
O 4 18

1
2

3

5th best run

abs mild mod sevr

20 9 2 O

S 12 4
4 12 3
O 5 21
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errorssummed-up (‘TOP 5 best runs)

gold labels

‘ absent mild moder severe

Absent 43 V4 T

Mild 32 313 74 1

Moderate 13 57

Severe O 20

@ III. |- Michele Filannino E.'E G RI D

24



scores’ meaning

Michele Filannino

* None: no evidence of these symptoms at any time

* Mild: some evidence of these symptoms but never
the focus of treatment

* Moderate: symptoms sufficient to be focus of
outpatient treatment (Intensive outpatient
orogram, maintenance, operating under the
iINnfluence of substances)

* Severe: symptoms sufficient to warrant inpatient
treatment/nospitalization now or at some point
(symptoms of withdrawal, blackouts from alcohol)

i~i-GRID
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depression

Michele Filannino

* A patient who Is depressed can have a null severity
level (O).

* A patient who Is depressed and has decreased
INterest scores at least mild (1).

* Examples: people with major depressive disorder

* A patient who Is depressed and has decreased
INnterest and that is the main focus of treatment
scores at least moderate (2).

* Examples: people who need an intervention to get out
of bed

* A patient who Is depressed and needs hospitalization/
electroconvulsive therapy scores severe (3)

i~i-GRID
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addiction

Michele Filannino

*x A patient who is violent and has a history of substances abuse scores
at least moderate (2).

* A patient who smokes cigarettes scores at least mild (7).

* A patient who uses alcohol (EtOH) or street drugs scores at least
moderate (2).

* A patient who uses marijuana (MJ):

* Occasional use not focus of a treatment = mild (1)
* specific focus of a treatment = moderate (2)
* INnpatient (or could have been) = severe (3)

*x A patient who has legal troubles (driving under the influence, arrest)/
iINntensive outpatient program because of substance abuse scores at
least moderate (2).

* A patient who has blackouts/detoxification/withdrawal symptoms
because of substance abuse scores severe (3).

* A patient who participate to Alcoholics Anonymous scores at least
moderate (2)

i~i-GRID
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Motivation (decrease)

*x A psychotic patient who Is amotivated
(anhedonia):
*x Not focus of treatment = mild (1)
* Needs treatments = moderate (2)
*x reguires ER or hospitalization = severe (3)
*x A patient who has little interest or pleasure
scores AND this Is not a focus of treatment,
scores mild (1)

Michele Filannino
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Motivation (INncrease)

Michele Filannino

* A patient who has mania:
* few hypomanic symptoms scores mild (1)
* elevation/abnormal drive scores moderate (2)
* dangerous behavior that needs hospitalization scores severe (3)
* IS already hospitalized scores severe (3)
* A patient who has obsessive compulsive disorder:

* present AN
* present AN
* present AN

D NO under prescription scores mild (1)
D under prescription scores at least moderate (2)

D hospitalized scores severe (3)

* A patient who has bipolar disorder:
* has symptoms scores mild (1)

* present AN
* present AN

D under prescription scores at least moderate (2)

D hospitalized scores severe (3)

i~i-GRID
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what we learned about psychiatry

Michele Filannino

* a disturb is In the positive valence if there's a rewarding
component (overdose intentional vs. unintentional)
* Main sources of positive valence are abnormal changes in

drive/approach/motivation: increase (mania, substance) and
decrease (symptoms of depression)

*x depression, anxiety, anhedonia, lack of motivation are
correlated

* Vviolence not because of substances usage doesn't score in
posItive valence

* CUttl

* PST

Nng IS an abnormally rewarding behavior

D has a negative valence component (arousal, social

withdrawal, cognition, intrusive thoughts)

*x any

mood/anxiety problem falls in the negative valence

i~i-GRID
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some fact about the data
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*x all the notes contain a review of systems which is
standardized, although some categories come and
go (PTSD)

* MOsSt notes contain useful alcohol screen

* Some words like panic, abuse are hard because
they appear negated and not

* |mportant dimensions:

* the freqguency In history

* IS Or IS Not the focus of a treatment (not focus:
Mild, focus: moderate, inpatient: severe)

*x the gravity of the specific event

i~i-GRID
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challenges!

*x patients describing someone else's symptoms (spouse worried
about her husband, parent worried about one child)

* vague prior event reference

* Clinician diagnosis not consistent with symptoms (patient
describes panic attacks, diagnosed with general anxiety)

* extremely complex patients (PTSD + borderline + substance +/-
pSyCchosIs)

*x extremely ill patients where history is not helpful (but mental
status and impression may be)

* Many syndromes are reflected in multiple domains. (depressed
mood (negative), loss of interest (positive), insomnia (arousal),
OCD, PTSD, panic)

* many domains reflect multiple syndromes (cognition = ADHD,
depressive symptoms, psychosis, PTSD)

@ Michele Filannino E-'E G RI D
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Keywords
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depression, anxiety, anhedonia, bipolar disorder, smoking, smoking

Nistory, cigarette,

—tHO (alcohol), MJ (marijjuana), street drugs,
llegality, manic, mood, decreased interest, decreased pleasure,

violence, blackout, amotivation, cutting, bingering (addiction to crack/
cocaine), purging (to cause intestinal evacuation), IOP (Intensive
outpatient program), PHP (partial hospitalization program), DUI
(driving under the influence), OUIl (operating under the influence),

legal trouble, arrest, outpatient treatment, C
therapy), AA (Alcoholics Anonymous), hypomania, hypomanic,

hyperactivity, increased libido, elevation, abnormal drive,

( _
(O
(e
St

ectroconvulsive t
0sessive compulsi

mergency room),

ress disorder), AD

nerapy), MDD (Major C

ve disorder), BPAD (bi

BT (cognitive behavioral

=@

epressive disorder), OCD

polar disorder),

—R

ROS (review of systems), PTSD (post-traumatic

HD (attention deficit hyperactivity disorder)
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